
drf-social-oauth2
Release 2.2.0

Wagner de Lima

Apr 24, 2024

CONTENTS

1 Contents 3
1.1 Usage . 3
1.2 Setting Up a New Application . 5
1.3 Integration Social Backends . 6
1.4 Authenticating Requests . 12
1.5 Running local tests . 13
1.6 Further Customization for Drf-Social-Oauth2 . 13
1.7 Testing the Setup . 13
1.8 OpenAPI Specs . 14

2 Indices and tables 17

i

ii

drf-social-oauth2, Release 2.2.0

DRF-Social-OAuth2 is a powerful module that enables OAuth2 social authentication for applications built on Django
REST Framework. By providing seamless integration with python-social-auth and django-oauth-toolkit, this package
facilitates the setup of social authentication for your REST API, as well as your OAuth2 provider.

If you’re new to OAuth2 or find it challenging to understand, don’t worry. DRF-Social-OAuth2 offers a straightforward
and streamlined approach to OAuth2 authentication. However, we highly recommend familiarizing yourself with the
OAuth2 concepts and terminology by referring to our recommended resources or other online tutorials.

If you’re eager to test out DRF-Social-OAuth2 but do not want to go through the trouble of setting it up in your local
environment, you can visit our facebook setup repository. It contains all the necessary configurations for you to get
started. You’ll only need to add a database configuration to your settings.py file, and you’ll be ready to go! Generally
speaking, it will help you set up your own django + drf-social-oauth2 project.

We hope that DRF-Social-OAuth2 simplifies your social authentication process and enhances the security and usability
of your Django REST Framework application. If you encounter any issues or have suggestions, feel free to submit them
to our GitHub repository or reach out to us via our support channels.

CONTENTS 1

https://badge.fury.io/for/py/drf-social-oauth2
https://www.codefactor.io/repository/github/wagnerdelima/drf-social-oauth2/badge
http://python-social-auth.readthedocs.io
https://django-oauth-toolkit.readthedocs.org
https://github.com/wagnerdelima/facebook_setup
https://github.com/wagnerdelima/drf-social-oauth2

drf-social-oauth2, Release 2.2.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Usage

This guide will walk you through the process of installing DRF-Social-OAuth2 and setting it up for use with your Django
REST Framework application. It assumes that you have some familiarity with Django and have a basic understanding
of OAuth2 authentication. If you’re new to Django or OAuth2, we recommend checking out our resources section for
additional learning materials.

To begin, you’ll need to have Python 3 and pip installed on your local machine. Once you have those installed, you can
follow the instructions outlined in the installation section of this guide to install DRF-Social-OAuth2 and its dependen-
cies. Then, you can configure your Django settings to use DRF-Social-OAuth2 by adding the necessary lines to your
settings.py file. Finally, you’ll need to migrate your database to apply the changes.

By the end of this guide, you’ll have successfully installed DRF-Social-OAuth2 and set it up for use with your Django
REST Framework application. With DRF-Social-OAuth2, you can make your REST API more secure and user-friendly
by allowing users to authenticate with their social media accounts.

1.1.1 Installation

This framework is published at the PyPI, install it with pip:

$ pip install drf_social_oauth2==2.2.0

To enable OAuth2 social authentication support for your Django REST Framework application, you need to install and
configure drf-social-oauth2. To get started, add the following packages to your INSTALLED_APPS:

INSTALLED_APPS = (
...
'oauth2_provider',
'social_django',
'drf_social_oauth2',

)

Include social auth urls to your urls.py:

from django.conf.urls import url

urlpatterns = patterns(
...
url(r'^auth/', include('drf_social_oauth2.urls', namespace='drf'))

)

3

drf-social-oauth2, Release 2.2.0

For versions of Django 4.0 or higher, use re_path instead:

from django.urls import re_path

urlpatterns = patterns(
...
re_path(r'^auth/', include('drf_social_oauth2.urls', namespace='drf'))

)

Next, add the following context processors to your TEMPLATE_CONTEXT_PROCESSORS:

TEMPLATE_CONTEXT_PROCESSORS = (
...
'social_django.context_processors.backends',
'social_django.context_processors.login_redirect',

)

Note that since Django version 1.8, the TEMPLATE_CONTEXT_PROCESSORS setting is deprecated. You should
instead set the ‘context_processors’ option in the OPTIONS of a DjangoTemplates backend:

TEMPLATES = [
{

...
'OPTIONS': {

'context_processors': [
...
'social_django.context_processors.backends',
'social_django.context_processors.login_redirect',

],
},

}
]

You can then enable the authentication classes for Django REST Framework by default or per view by updating the
REST_FRAMEWORK and AUTHENTICATION_BACKENDS entries in your settings.py:

REST_FRAMEWORK = {
...
'DEFAULT_AUTHENTICATION_CLASSES': (

...
'oauth2_provider.ext.rest_framework.OAuth2Authentication', # django-oauth-

→˓toolkit < 1.0.0
'oauth2_provider.contrib.rest_framework.OAuth2Authentication', # django-oauth-

→˓toolkit >= 1.0.0
'drf_social_oauth2.authentication.SocialAuthentication',

),
}

AUTHENTICATION_BACKENDS = (
...
'drf_social_oauth2.backends.DjangoOAuth2',
'django.contrib.auth.backends.ModelBackend',

)

The following are settings available for drf-social-oauth2:

4 Chapter 1. Contents

drf-social-oauth2, Release 2.2.0

• DRFSO2_PROPRIETARY_BACKEND_NAME: name of your OAuth2 social backend (e.g "Facebook"), defaults to
"Django"

• DRFSO2_URL_NAMESPACE: namespace for reversing URLs

• ACTIVATE_JWT: If set to True the access and refresh tokens will be JWTed. Default is False.

1.2 Setting Up a New Application

To begin, navigate to the Django admin panel and create a new application with the following configuration:

• Leave the client_id and client_secret fields unchanged.

• Set the user field to your superuser.

• Leave the redirect_uris field blank.

• Set the client_type field to confidential.

• Set the authorization_grant_type field to ‘Resource owner password-based’.

• Optionally, you can set the name field to a name of your choice.

With these settings in place, the installation is now complete and you can proceed to test the newly configured applica-
tion.

For further information and to take full advantage of the capabilities of this package, it is highly recommended that you
refer to the documentation for python-social-auth and django-oauth-toolkit. If you intend to enable a social backend
such as Facebook, you may want to consult the python-social-auth documentation on supported backends and the
django-social-auth documentation on backend configuration.

Screenshot of the new application creation.

Please, read the Integration Social Backends in order to integrate social libraries into your project.

1.2. Setting Up a New Application 5

http://python-social-auth.readthedocs.io/en/latest/backends/index.html#supported-backends
http://python-social-auth.readthedocs.io/en/latest/configuration/django.html

drf-social-oauth2, Release 2.2.0

1.3 Integration Social Backends

For each authentication provider, the top portion of your REST API settings.py file should look like this:

INSTALLED_APPS = (
...
OAuth
'oauth2_provider',
'social_django',
'drf_social_oauth2',

)

TEMPLATES = [
{

...
'OPTIONS': {

'context_processors': [
...
OAuth
'social_django.context_processors.backends',
'social_django.context_processors.login_redirect',

],
},

}
]

REST_FRAMEWORK = {
...
'DEFAULT_AUTHENTICATION_CLASSES': (

...
OAuth
'oauth2_provider.ext.rest_framework.OAuth2Authentication', # django-oauth-

→˓toolkit < 1.0.0
'oauth2_provider.contrib.rest_framework.OAuth2Authentication', # django-oauth-

→˓toolkit >= 1.0.0
'drf_social_oauth2.authentication.SocialAuthentication',

)
}

Listed below are a few examples of supported backends that can be used for social authentication.

For each integration for every single backend, you need to add a new application for each corresponding social backend.
See the Setting Up a New Application section. This means that if you are authenticating with Facebook and Google,
you have to create two applications in the Application section in your Django Admin dashboard.

6 Chapter 1. Contents

drf-social-oauth2, Release 2.2.0

1.3.1 Facebook Integration

To use Facebook as the authorization backend of your REST API, your settings.py file should look like this:

AUTHENTICATION_BACKENDS = (
Others auth providers (e.g. Google, OpenId, etc)
...

Facebook OAuth2
'social_core.backends.facebook.FacebookAppOAuth2',
'social_core.backends.facebook.FacebookOAuth2',

drf_social_oauth2
'drf_social_oauth2.backends.DjangoOAuth2',

Django
'django.contrib.auth.backends.ModelBackend',

)

Facebook configuration
SOCIAL_AUTH_FACEBOOK_KEY = '<your app id goes here>'
SOCIAL_AUTH_FACEBOOK_SECRET = '<your app secret goes here>'

Define SOCIAL_AUTH_FACEBOOK_SCOPE to get extra permissions from Facebook.
Email is not sent by default, to get it, you must request the email permission.
SOCIAL_AUTH_FACEBOOK_SCOPE = ['email']
SOCIAL_AUTH_FACEBOOK_PROFILE_EXTRA_PARAMS = {

'fields': 'id, name, email'
}

To test your REST API’s settings, you can execute the following command:

$ curl -X POST -d "grant_type=convert_token&client_id=<client_id>&client_secret=<client_
→˓secret>&backend=facebook&token=<facebook_token>" http://localhost:8000/auth/convert-
→˓token

This command will return an access_token that you should use for every HTTP request to your API. The purpose of
this process is to convert a third-party access token (user_access_token) into an access token that you can use with your
API and its clients (access_token). By doing so, you will be able to authenticate each request and avoid authenticating
with Facebook every time.

You can obtain the ID (SOCIAL_AUTH_FACEBOOK_KEY) and secret (SOCIAL_AUTH_FACEBOOK_SECRET) of
your app from https://developers.facebook.com/apps/.

For testing purposes, you can utilize the access token user_access_token from https://developers.facebook.com/tools/
accesstoken/.

If you require further information on how to configure python-social-auth with Facebook, visit http://
python-social-auth.readthedocs.io/en/latest/backends/facebook.html.

1.3. Integration Social Backends 7

https://developers.facebook.com/apps/
https://developers.facebook.com/tools/accesstoken/
https://developers.facebook.com/tools/accesstoken/
http://python-social-auth.readthedocs.io/en/latest/backends/facebook.html
http://python-social-auth.readthedocs.io/en/latest/backends/facebook.html

drf-social-oauth2, Release 2.2.0

1.3.2 Google Integration

To use Google OAuth2 as the authorization backend of your REST API, your settings.py file should look like this:

AUTHENTICATION_BACKENDS = (
Others auth providers (e.g. Facebook, OpenId, etc)
...
Google OAuth2
'social_core.backends.google.GoogleOAuth2',
drf-social-oauth2
'drf_social_oauth2.backends.DjangoOAuth2',
Django
'django.contrib.auth.backends.ModelBackend',

)

Google configuration
SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = <your app id goes here>
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = <your app secret goes here>

Define SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE to get extra permissions from Google.
SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE = [

'https://www.googleapis.com/auth/userinfo.email',
'https://www.googleapis.com/auth/userinfo.profile',

]

To test the configuration settings, execute the following command:

$ curl -X POST -d "grant_type=convert_token&client_id=<django-oauth-generated-client_id>&
→˓client_secret=<django-oauth-generated-client_secret>&backend=google-oauth2&token=
→˓<google_token>" http://localhost:8000/auth/convert-token

Upon successful execution, the above command returns an access_token that you must utilize for each HTTP request
made to your REST API. In essence, what is happening here is that you are converting a third-party access token
(user_access_token) into an access token that can be used with your API and its clients (access_token). For each sub-
sequent communication between your system/application and your API, it is necessary to use this token to authenticate
each request, thereby avoiding the need to authenticate with Google every time.

To obtain your app’s ID (SOCIAL_AUTH_GOOGLE_OAUTH2_KEY) and secret (SO-
CIAL_AUTH_GOOGLE_OAUTH2_SECRET), visit https://console.developers.google.com/apis/credentials. For
more details on how to create an ID and secret, visit https://developers.google.com/identity/protocols/OAuth2.

For testing purposes, you can use the access token user_access_token from https://developers.google.com/
oauthplayground/ and follow these steps:

• Visit the OAuth 2.0 Playground

• Select Google OAuth2 API v2 and authorize for https://www.googleapis.com/auth/userinfo.email and https://
www.googleapis.com/auth/userinfo.profile

• Exchange Authorization code for tokens and get access token

• Use the access token as the token parameter in the /convert-token endpoint.

For more information on configuring python-social-auth with Google, please visit https://python-social-auth.
readthedocs.io/en/latest/backends/google.html#google-oauth2.

Should you prefer a step-by-step tutorial, refer to this link provided by @djangokatya: https://djangokatya.com/2021/
04/09/social-login-for-django-rest-framefork-for-newbies-a-k-a-for-me/.

8 Chapter 1. Contents

https://console.developers.google.com/apis/credentials
https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/oauthplayground/
https://developers.google.com/oauthplayground/
https://www.googleapis.com/auth/userinfo.email
https://www.googleapis.com/auth/userinfo.profile
https://www.googleapis.com/auth/userinfo.profile
https://python-social-auth.readthedocs.io/en/latest/backends/google.html#google-oauth2
https://python-social-auth.readthedocs.io/en/latest/backends/google.html#google-oauth2
https://djangokatya.com/2021/04/09/social-login-for-django-rest-framefork-for-newbies-a-k-a-for-me/
https://djangokatya.com/2021/04/09/social-login-for-django-rest-framefork-for-newbies-a-k-a-for-me/

drf-social-oauth2, Release 2.2.0

1.3.3 Google OpenID Integration

OpenID and access tokens are two different concepts that are used in authentication and authorization systems.

OpenID is an open standard that allows users to authenticate with multiple websites and applications using a single set
of credentials. When a user logs in using OpenID, they are redirected to their OpenID provider, which authenticates
them and provides the website or application with a unique identifier for the user. The identifier can be used to retrieve
the user’s profile information, but it does not provide any authorization to access APIs or services.

Access tokens, on the other hand, are used to authorize API requests on behalf of the user. When a user logs in and
grants permission to access their data, an access token is generated and returned to the client application. The access
token is used to authenticate the client application and authorize it to make API requests on behalf of the user. The
access token contains information such as the permissions granted to the client application, the expiration time, and a
signature that verifies the token’s authenticity.

In summary, OpenID is used to authenticate users and provide a unique identifier for them, while access tokens are
used to authorize API requests on behalf of the user. While OpenID and access tokens are both important components
of authentication and authorization systems, they serve different purposes and should not be confused with each other.

In order to authenticate with Open ID, proceed as follows:

AUTHENTICATION_BACKENDS = (
Others auth providers (e.g. Facebook, OpenId, etc)
...
Google OAuth2
'drf_social_oauth2.backends.GoogleIdentityBackend',
drf-social-oauth2
'drf_social_oauth2.backends.DjangoOAuth2',
Django
'django.contrib.auth.backends.ModelBackend',

)

Google configuration
SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = <your app id goes here>
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = <your app secret goes here>

Define SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE to get extra permissions from Google.
SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE = [

'https://www.googleapis.com/auth/userinfo.email',
'https://www.googleapis.com/auth/userinfo.profile',

]

For testing purposes, you can use the id token id_token from https://developers.google.com/oauthplayground/.

1. Visit the OAuth 2.0 Playground.

2. Select Google OAuth2 API v2 and authorize for openid.

3. Exchange Authorization code for tokens and get access token.

4. Use the access token as the token parameter in the /convert-token endpoint.

If you want to have your open id token validated, copy it and hit this url, https://oauth2.googleapis.com/tokeninfo?id_
token=your_token_here.

To test the configuration settings, execute the following command:

1.3. Integration Social Backends 9

https://developers.google.com/oauthplayground/
https://oauth2.googleapis.com/tokeninfo?id_token=your_token_here
https://oauth2.googleapis.com/tokeninfo?id_token=your_token_here

drf-social-oauth2, Release 2.2.0

$ curl -X POST -d "grant_type=convert_token&client_id=<django-oauth-generated-client_id>&
→˓client_secret=<django-oauth-generated-client_secret>&backend=google-identity&token=
→˓<google_openid_token>" http://localhost:8000/auth/convert-token

1.3.4 Github Integration

AUTHENTICATION_BACKENDS = (
Others auth providers (e.g. Facebook, OpenId, etc)
...

GitHub OAuth2
'social_core.backends.github.GithubOAuth2',

drf-social-oauth2
'drf_social_oauth2.backends.DjangoOAuth2',

Django
'django.contrib.auth.backends.ModelBackend',

)

GitHub configuration
SOCIAL_AUTH_GITHUB_KEY = <your app id goes here>
SOCIAL_AUTH_GITHUB_SECRET = <your app secret goes here>

You need to register a new GitHub app at https://github.com/settings/applications/new. set the callback URL to http:
//example.com/complete/github/ replacing example.com with your domain.

The Client ID should be added on SOCIAL_AUTH_GITHUB_KEY and the SOCIAL_AUTH_GITHUB_KEY should
be added on SOCIAL_AUTH_GITHUB_SECRET.

As described by GitHub’s documentation, you need to follow a few steps in order to generate the access token to post
requests on behalf of a user, team or organisation. The first step, your application will need to Request a user’s GitHub
identity by sending a GET request to

https://github.com/login/oauth/authorize

The only compulsory parameters are client_id=<the app client id> and redirect_uri=<the redirect you added in your
app>. You will be redirected to a new location in your browser, such as http://example.com/complete/github?code=
d9ba2b356d27455970bf, copy the code=value from it. Remember, this is only value for 10 minutes. This process
should be automated by the module/library integrated in your front end application.

The second step is to send a request to:

$ curl -X POST -d "client_id=<client id>&client_secret=<client secret>&code=<code from␣
→˓previous step>&redirect_uri=<your redirect uri>" https://github.com/login/oauth/access_
→˓token

You should receive an access token from the previous step. Once you have the access token, test your configuration

Now, visit https://github.com/settings/tokens and create a new token. Select the user checkbox, as to grant user access.
The click on the Generate Token button. Use the access token as the token parameter in the /convert-token endpoint.

To test the configuration settings, execute the following command:

10 Chapter 1. Contents

https://github.com/settings/applications/new
http://example.com/complete/github/
http://example.com/complete/github/
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/authorizing-oauth-apps
http://example.com/complete/github?code=d9ba2b356d27455970bf
http://example.com/complete/github?code=d9ba2b356d27455970bf
https://github.com/settings/tokens

drf-social-oauth2, Release 2.2.0

$ curl -X POST -d "grant_type=convert_token&client_id=<django-oauth-generated-client_id>&
→˓client_secret=<django-oauth-generated-client_secret>&backend=github&token=<github_
→˓token>" http://localhost:8000/auth/convert-token

Read more about GitHub’s configuration at Python Social Auth - Github Page

1.3.5 Instagram Integration

Before setting up any configuration in your settings.py file, you need to create an application in your Meta For Develop-
ers dashboard. Follow these guidelines in order to create and configure your application. The steps are easy to follow.
Proceed until step 6.

Configure your settings.py as follows:

AUTHENTICATION_BACKENDS = (
Others auth providers (e.g. Facebook, OpenId, etc)
...

Instagram OAuth2
'social_core.backends.instagram.InstagramOAuth2',

drf-social-oauth2
'drf_social_oauth2.backends.DjangoOAuth2',

Django
'django.contrib.auth.backends.ModelBackend',

)

Instagram configuration
SOCIAL_AUTH_INSTAGRAM_KEY = <your app id goes here>
SOCIAL_AUTH_INSTAGRAM_SECRET = <your app secret goes here>
SOCIAL_AUTH_INSTAGRAM_AUTH_EXTRA_ARGUMENTS = {'scope': 'likes comments relationships'}

Once you finished setting up the configuration in your project, copy the access token generated at step 5 (from facebook
guidelines). Step 5 will return a response as follows:

{
"access_token": "IGQVJ...",
"user_id": 17841405793187218

}

Copy the access token and use it in the token parameter in your /auth/convert-token endpoint. To test the configuration
settings, execute the following command:

$ curl -X POST -d "grant_type=convert_token&client_id=<django-oauth-generated-client_id>&
→˓client_secret=<django-oauth-generated-client_secret>&backend=github&token=<access_
→˓token>" http://localhost:8000/auth/convert-token

1.3. Integration Social Backends 11

https://python-social-auth.readthedocs.io/en/latest/backends/github.html
https://developers.facebook.com/docs/instagram-basic-display-api/getting-started

drf-social-oauth2, Release 2.2.0

1.3.6 Other Backend Integration

DRF-Social-Oauth2 is not only limited to Google, Facebook and Github. You can integrate with every backend de-
scribed at the Python Social Oauth backend integrations.

1.4 Authenticating Requests

One of the notable features of our framework is the default authentication backend, aptly named SocialAuthentication.
This backend facilitates a streamlined process of user registration and authentication with your REST API.

The class functions by retrieving the backend name and token from the Authorization header, and subsequently authen-
ticating the user through the relevant external provider. In the event that the user has not been previously registered on
your app, the backend creates a new user for this purpose, ensuring a seamless authentication process.

1.4.1 Authentication Ready View

You can set up a view which requires authentication just by inheriting from the generics class of Django Rest Frame-
work, as shown below:

from rest_framework import generics

class MyView(generics.ListAPIView):
def get(self, request, *args, **kwargs):

response = {
'message': 'token works.'

}
return Response(response, status=200)

If, by any chance you need a view without authentication, just set the authentication_class

from rest_framework.permissions import AllowAny

class MyView(generics.ListAPIView):
authentication_classes = (AllowAny,)

def get(self, request, *args, **kwargs):
response = {

'message': 'token works.'
}
return Response(response, status=200)

Include the header Authorization to request, and your view should respond if your access token is valid:

$ curl -H "Authorization: Bearer <backend_name> <backend_token>" http://localhost:8000/
→˓route/to/your/view

12 Chapter 1. Contents

drf-social-oauth2, Release 2.2.0

1.5 Running local tests

The unit tests for drf-social-oauth2 are located in the tests/ directory. To run these tests on your local machine, you will
need to first build the Docker image and then execute the test run command. To do so, follow these steps:

Build the Docker image by running the following command:

$ docker-compose -f docker-compose.tests.yml build --no-cache

Execute the test run command by running the following command:

$ docker-compose -f docker-compose.tests.yml up --exit-code-from app

Once the tests have completed, you can view the results in the htmlcov/ folder in your local environment. The index.html
file provides detailed information about the test coverage of the project.

To clean up your local system and remove all containers created during the testing process, run the following command:

$ docker-compose -f docker-compose.tests.yml down

1.6 Further Customization for Drf-Social-Oauth2

This section is meant for further customization of the framework. Any idea is welcome and will be listed here.

1.6.1 Customize token expiration

To customize the expiration time for tokens, you can easily do so by adjusting the settings in your settings.py file.

Simply import the oauth2_provider settings and set the ACCESS_TOKEN_EXPIRE_SECONDS to your desired value,
in seconds.

Here’s an example of how to set the expiration time to 6 months:

in your settings.py file.
from oauth2_provider import settings as oauth2_settings

expires in 6 months
oauth2_settings.DEFAULTS['ACCESS_TOKEN_EXPIRE_SECONDS'] = 1.577e7

By customizing the token expiration time, you can fine-tune the security and functionality of your application to suit
your specific needs.

1.7 Testing the Setup

Welcome to the installation guide. Now that you have completed the installation, let’s explore the various functionalities
provided by this package. For the following examples, we will assume that the REST API is reachable at http://localhost:
8000.

To retrieve a token for a user, you can use the following command with curl:

1.5. Running local tests 13

http://localhost:8000
http://localhost:8000

drf-social-oauth2, Release 2.2.0

$ curl -X POST -d "client_id=<client_id>&client_secret=<client_secret>&grant_
→˓type=password&username=<user_name>&password=<password>" http://localhost:8000/auth/
→˓token

Here, replace client_id and client_secret with the keys generated automatically by the Application model you created.

To refresh a token, use the following command:

$ curl -X POST -d "grant_type=refresh_token&client_id=<client_id>&client_secret=<client_
→˓secret>&refresh_token=<your_refresh_token>" http://localhost:8000/auth/token

You can exchange an external token for a token linked to your app using:

$ curl -X POST -d "grant_type=convert_token&client_id=<client_id>&client_secret=<client_
→˓secret>&backend=<backend>&token=<backend_token>" http://localhost:8000/auth/convert-
→˓token

Here, replace backend with the name of an enabled backend and backend_token with the token you received from the
external service.

Finally, to revoke tokens, use the following commands:

To revoke a single token:

$ curl -X POST -d "client_id=<client_id>&client_secret=<client_secret>&token=<your_token>
→˓" http://localhost:8000/auth/revoke-token

To revoke all tokens for a user:

$ curl -H "Authorization: Bearer <token>" -X POST -d "client_id=<client_id>" http://
→˓localhost:8000/auth/invalidate-sessions

To revoke only refresh tokens:

$ curl -H "Authorization: Bearer <token>" -X POST -d "client_id=<client_id>" http://
→˓localhost:8000/auth/invalidate-refresh-tokens

No need to build your own request as you can also use the provided curl commands or the Swagger interface.

1.8 OpenAPI Specs

To interact with your API and make requests, you can utilize the Swagger Editor. The following commands will enable
you to run the Swagger Editor and begin interacting with your API.

For Mac and Linux users, run the following command:

$ docker run --rm -p 8080:8080 -v $(pwd):/tmp -e SWAGGER_FILE=/tmp/api.yaml swaggerapi/
→˓swagger-editor

For Windows users, run the following command:

$ docker run --rm -p 8080:8080 -v ${pwd}:/tmp -e SWAGGER_FILE=/tmp/api.yaml swaggerapi/
→˓swagger-editor

14 Chapter 1. Contents

drf-social-oauth2, Release 2.2.0

You don’t need to build your own requests from scratch, as both curl commands and the Swagger interface are provided.
With these tools at your disposal, you can easily interact with your API and test its functionality.

You can access the Swagger application by visiting http://localhost:8080.

The Swagger console looks like this:

1.8. OpenAPI Specs 15

http://localhost:8080

drf-social-oauth2, Release 2.2.0

16 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

17

	Contents
	Usage
	Installation

	Setting Up a New Application
	Integration Social Backends
	Facebook Integration
	Google Integration
	Google OpenID Integration
	Github Integration
	Instagram Integration
	Other Backend Integration

	Authenticating Requests
	Authentication Ready View

	Running local tests
	Further Customization for Drf-Social-Oauth2
	Customize token expiration

	Testing the Setup
	OpenAPI Specs

	Indices and tables

